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We use a high-resolution spectral numerical scheme to solve the two-dimensional 
equations of motion for the flow of a uniformly stratified Boussinesq fluid over isolated 
bottom topography in a channel of finite depth. The focus is on topography of small 
to moderate amplitude and slope and for conditions such that the flow is near linear 
resonance of either of the first two internal wave modes. The results are compared with 
existing inviscid theories: the steady hydrostatic analysis of Long (1955), time- 
dependent linear long-wave theory, and the fully nonlinear, weakly dispersive resonant 
theory of Grimshaw & Yi (1991). For the latter, we use a spectral numerical technique, 
with improved accuracy over previously used methods, to solve the approximate 
evolution equation for the amplitude of the resonant mode. Also, we present some new 
results on the modal similarity of the solutions of Long and of Grimshaw & Yi. For 
flow conditions close to linear resonance, solutions of Grimshaw & Yi’s evolution 
equation compare very well with our fully nonlinear numerical solutions, except for 
very steep topography. For flow conditions between the first two resonances, Long’s 
steady solution is approached asymptotically in time when the slope of the topography 
is sufficiently small. For steeper topography, the flow remains unsteady. This 
unsteadiness is manifested very clearly as periodic oscillations in the drag, which have 
been observed in previous numerical simulations and tow-tank experiments. We 
explain these oscillations as mainly due to the internal waves that according to linear 
theory persist longest in the neighbourhood of the topography. 

1. Introduction 
The flow of a uniformly stratified inviscid Boussinesq fluid over two-dimensional 

localized bottom topography in a channel of finite depth has been the subject of 
extensive study since the pioneering work of Long (1955). For this special but 
important class of flows, Long derived a linear field equation (often called Long’s 
equation) that describes the fully nonlinear steady flow with the assumption that all the 
streamlines originate upstream (i.e. no closed streamlines). Long found solutions that 
obey this assumption, provided that the flow is not close to resonance. Near resonance 
closed streamlines appear, suggesting that no steady solution exists and that internal 
wave-breaking may occur. Solutions of the linear initial-value problem show that at 
resonance the topography forces an internal wave mode that grows indefinitely with 
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time (linearly with time in the hydrostatic limit), so that even very small topography 
eventually gives rise to large-amplitude internal waves and nonlinear behaviour. 

Grimshaw & Smyth (1986) derived an approximate evolution equation that 
describes the weakly nonlinear evolution of the amplitude of the upstream component 
of the resonant mode for arbitrary stable stratification and uniform mean flow. The 
evolution equation they obtained is the forced Kortweg de Vries (fKdV) equation and 
is based on the assumption that, for topography of small amplitude and moderate 
slope, a balance is achieved between weak nonlinearity and linear dispersion. This 
balance implies that the flow response to the introduction of the topography scales as 
the square root of the amplitude of the topography. The theory fails, however, for the 
special case of uniform stratification (the case of interest here) because the nonlinear 
terms vanish and therefore cannot balance the dispersion : this failure occurs because 
the fully nonlinear steady-state flow is governed by a linear field equation. 

Grimshaw & Yi (1 99 1 ; hereinafter referred to as GY) proposed an approximate 
theory for resonant flow in uniformly stratified flows. They derived a new evolution 
equation, which we will refer to as the finite-amplitude long-wave equation (or more 
simply, the FLW equation), that is a small perturbation of a time-dependent form of 
Long’s equation, based on the assumptions that the flow is near resonance and the time 
development is very slow. They assumed that, for topography of small amplitude and 
moderate slope, the upstream propagating component of the resonant mode has an 
amplitude that scales with the channel depth and that the nonlinearity comes in 
through the time dependence which scales with the power of the amplitude of the: 
topography. Thus topography, no matter how small, will produce near resonance a 
response of the order of the channel depth, but the smaller the topography the longer 
it will take for this large-amplitude response to develop. The FLW equation has the 
property, shared with Long’s equation, that the solutions are valid only up to the point 
where overturning streamlines appear somewhere in the flow. That is, the FLW 
equation can describe everything up to but not including breaking internal waves. 

Although there have been some recent studies by Hanazaki (1992, 1993) and Lamb 
(1994) that compare the results of numerical solutions of the fully nonlinear equations 
with those of the FLW equation for a few cases, there is as yet no thorough study of‘ 
the range of validity of the FLW equation. In particular, these previous studies 
concentrated on relatively narrow obstacles. Furthermore, it appears that previous 
numerical solutions of the FLW equation did not accurately take into account 
singularities that occur in the FLW equation’s kernel function. We find that these 
singularities become significant as breaking amplitudes are approached. In the present 
work we describe the results of a systematic study of this problem over a range of 
obstacle amplitudes and slopes using a high-resolution spectral method to solve the 
fully nonlinear inviscid equations for a Boussinesq fluid and an improved numerical 
method to solve the FLW equation. 

In 52 we define the problem and review Long’s hydrostatic steady theory, linear 
hydrostatic resonant theory and GY’s weakly dispersive resonant theory. This review 
contains what we believe are some new insights into the self-similar behaviour of these 
theories. In $3 we outline the numerical methods we used for solving the fully nonlinear 
inviscid equations and the methods we used to solve the FLW equation. In $4 we 
describe our numerical results. In 95, we summarize and conclude. 
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2. Review of the theory 
2.1. Governing equations 

The flow and coordinate system under consideration are sketched in figure 1. We use 
a Cartesian coordinate system with x as the horizontal and z as the vertical coordinate. 
A stratified, incompressible and inviscid fluid with constant buoyancy frequency N 
flows through a channel of total depth D that is bounded above by a horizontal rigid 
lid and below by a two-dimensional surface-mounted obstacle represented by the curve 
z = h(xj. We will assume that h(x )  is positive, symmetric and streamlined, with 
maximum height a and half-width L and such that h(x) + 0 as x --f It a. The density 
variation of the fluid over the depth of the channel is assumed to be sufficiently small 
compared to the mean density po of the fluid for the Boussinesq approximation to be 
accurate. 

We consider the two-dimensional motion that results from an initial condition 
corresponding to an idealized tow-tank experiment. That is, at time t = 0 surfaces of 
constant density are all horizontal and the fluid is at rest, and at time t = Of the 
obstacle is impulsively accelerated to a constant speed U. We seek the solutions of this 
problem for t > 0 in a reference frame in which the obstacle is at rest (as depicted in 
figure 1). Accordingly, we choose a background state to consist of a constant 
horizontal speed U and horizontally homogeneous density p,(z) and pressurep,(z) that 
satisfy the hydrostatic condition dp,/dz = -gp,, where g is the acceleration due to 
gravity. 

The equations of motion in the Boussinesq approximation are 

where 

c7u a w  -+- = 0, 
ax az 

2 = 0, 
dt 

d Z  z a  
= -+(U+u)-+w--, 

dt at ax az 
- 

and u, w are the horizontal and vertical components of the perturbation velocity (the 
velocity relative to the background flow), p is the density andp is the dynamic pressure. 

For mathematical convenience, we introduce the perturbation streamfunction 
th(x, 2, t ) ,  defined as 

and the vorticity w(x, z ,  tj, defined such that, 
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FIGURE 1 .  A schematic diagram of the flow under consideration. 

Also, it is useful in the following discussion to introduce the vertical displacement 
<(x, z ,  f). which is defined such that the density is given by p(x, z,  t) = po(z - 5 )  and 
solves (2.4) exactly provided that 

Finally, we can eliminate the pressure from (2.2) and (2.3) to obtain the single equation 

- dw = - N 2 - ,  ?< 
dt ?X 

in which the buoyancy frequency N is given by 

(2.9) 

(2.10) 

and is assumed here to be a constant. Thus, the problem can be reformulated so that 
there are three unknowns <, $, and w given by the three equations (2.7), (2.8), and (2.9). 

The boundary conditions are 

~ = Uh(x) on z = h(x),  

4/'=0 on z = D ,  

(2.1 1) 

(2.12) 

which ensures that the component of fluid velocity normal to the bounding surfaces is 
zero, and the initial conditions corresponding to an impulsively accelerated obstacle 
are given by 

ax,  =,o> = 0 (2.13) 

w(x, 2 ,O)  = 0. (2.14) 

Another idealized initial condition that is common in analyses of flow over 
topography is to assume that the obstacle is 'pushed up' impulsively from an initially 
flat lower boundary. This alternative initial condition is expressed by (2.1 lF(2.14) as 
above except that (2.13) is replaced by a different and more complicated expression 
which if linearized reduces to {(x, z ,  0) = $(x, z ,  0)/ U. These different initial conditions 
will affect mainly the form of the transients, and will have little or no effect on the long- 
time behaviour of the flow near the obstacle. 

In all the simulations described in this paper the specific obstacle shape used was 

h(x) = aexp[-(x-xJ2/LZ], (2.15) 
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in which xu is the location of the obstacle crest. Given a particular obstacle shape, there 
are three non-dimensional parameters that define this problem : 

(2.16) 

where K is the inverse Froude number (the ratio of the fastest linear internal gravity 
wave speed in the channel to the mean fluid speed). The resonant points are where 
K = n, with n = 1,2,. . . . Wc will focus our attention on (but not entirely restrict it to) 
small to moderate values of a / D ,  moderate to large values of L I D  and 1 < K 6 2. In 
general we will present our results in terms of the vertical displacement <(x, z ,  t). 

In the following discussion of the inviscid theories, we will focus for simplicity on 
obstacles with sufficiently large L I D  such that the hydrostatic approximation is valid. 

2.2. Long’s modelfor steady jow 
First, we seek steady solutions of the problem posed in the previous section. For this 
situation Long (1955) derived a now well-known linear field equation that describes the 
fully nonlinear flow field which can be thought of as a generalization of potential flow 
to a restricted class of stratified flows. For obstacles that have sufficiently long 
horizontal extent for the hydrostatic approximation to be applicable, this equation can 
be written as 

(2.17) 

For steady flows < is related to the perturbation streamfunction by 

5 = @/U.  (2.1 S) 

The exact solution of (2.17) that satisfies boundary conditions (2.11) and (2.12) is 

sin [Kn( 1 - z / D ) ]  
sin [Kn( 1 - h(x) /D)]  ‘ 

5 = h(x) (2.19) 

Long’s model is derived based on the assumption that all streamlines originate 
upstream and therefore that there are no regions of the flow containing closed 
streamlines (regions of recirculating flow). Long showed that (2.19) satisfies this 
assumption in the following regions of the parameter space: (a) for H = a / D  that 
satisfies 0 < H < 1 (that is, all physically valid values of H )  if K < 1, and (6) for H that 
satisfies 

KnH- Isin [Kn(l -H)]l 8 0, (2.20) 

if K 3 1. Otherwise, apparently no physically valid steady solutions exist, since the 
solutions of Long’s model produce statically unstable flows that presumably imply the 
existence of wave breaking and associated unsteadiness. More details of the properties 
of (2.19) are described by Baines & Guest (19x8). We have plotted the curve produced 
by (2.20) when the equality holds (which we will refer to as the breaking curve) in the 
K-H parameter space in figure 2. This curve separates regions of steady flow from 
unsteady flow, based on Long’s model. Regions where no steady flow exists are shown 
shaded in the figure. 

There are several interesting features about the parameter space diagram in figure 2. 
First, when K <  1 (where the flow is supercritical to all linear wave modes in the 
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FIGURE 2. The K -  H parameter space diagram for the hydrostatic Long’s model solution of flow over 
a two-dimensional obstacle for 0 ,< K ,< 4. The unshaded areas are regions of the parameter space for 
which the solution satisfies the assumptions used in deriving Long’s model and the shaded regions are 
where the solution contains closed recirculating cells (which violate the assumptions used in deriving 
the model). 

channel) physically valid steady solutions exist for all possible obstacle amplitudes. 
Secondly, and conversely, when K = n (where n = 1,2, . . .) there are no obstacle heights 
for which steady solutions exist. These are the points at which one of the linear long 
gravity wave modes is resonant in the channel. Thirdly, for small H the region of 
unsteady flow near K = n is not symmetric. For K < n (where the flow is supercritical 
with respect to mode n) the curve that separates steady from unsteady flow approaches 
the H = 0 axis very steeply and for small (n-  K )  has the form 

(2.21) 

(for all n except n = 1, which is a special case where the boundary curve is a vertical 
line). For K > n (where the flow is subcritical with respect to mode n)  the curve 
approaches the H = 0 axis more slowly and for small (K-n) has the form 

1 1  
K 2  

H = - - (K-  n). (2.22) 

Fourthly, the mean value of H that satisfies (2.20) when equality holds decreases as K 
increases such that H seems to scale as 1/K. 

This last point suggests that when K 2 1 a more natural vertical lengthscale is 7[:U/N. 
This new scale is related to the vertical wavelength of the linear long waves that can 
exist in the channel when K 3 1. When K = 1 one mode can exist in the channel and 
its half vertical wavelength equals D. As K increases above 1, more linear modes can 
exist in the channel and these modes have progressively smaller half vertical 
wavelengths, the smallest being equal to D/n ,  where n is the largest integer less than 
K. With this scaling we can show that the curve represented by (2.20) when the equality 
holds is similar for K 3 1. We define non-dimensional variables, denoted by superscript 
* as 

H* = KH, K” = K - n + l ,  (2.23) 

where n = 1,2, .. . is chosen such that K* = Kif K <  2 and 1 d K* < 2 if K 2 2. Then 
(2.20) can be written as 

xH* - (sin [.n(K* -H*)]l < 0. (2.24) 
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FIGLJRE 3. The K* - H* parameter space diagram for the hydrostatic Long’s model solution for flow 
over two-dimensional obstacles. The unshaded and shaded rcgions have the same meaning as in figure 
2. @, cases plotted in figures 8 and 9 ;  x , cases plotted in figurcs 15 and 17; 0, cases plotted in figures 
20 and 21. 

Therefore, this scaling collapses the curves for all the regions n < K < n + I ,  for 
n = 2,3,. . . , onto the region 1 < K < 2. We have plotted (2.24) in figure 3. Note that 
the maximum obstacle amplitude for which steady solutions exist when K >  1 is 
KH = 1,’~ 2 0.32, which is a good measure of when the obstacle amplitude is large 
enough to induce strongly nonlinear or overturning flow. 

For obstacles with horizontal lengthscales that are not large enough for the 
hydrostatic approximation to be valid, the form of the breaking curves are a function 
of the shape of the obstacle and must be determined numerically. Long (1955) 
computed these breaking curves for obstacles with a range of horizontal lengthscales 
(although he did not specify the exact shapes of these obstacles) and his results indicate 
that the general form of the breaking curves is similar to (2.20) but that the amplitude 
of the curve increases as the horizontal scale of the obstacle decreases. This increase in 
amplitude can be as much as 50 o/o over the hydrostatic value when the horizontal scale 
of the obstacle asymptotes to zero. 

There have been no experimental or numerical experiments to verify the form of this 
breaking curve for obstacles with shallow slopes. However, there has been an 
experimental attempt, Baines (1977), as well as an inviscid numerical attempt, Lamb 
(1994), to verify the breaking curves for obstacles with small horizontal scales (a Witch 
of Agnesi shape with ratios of obstacle half-widths to channel depths of between 0.13 
to 0.3). Neither could reproduce the theoretical breaking curves. They found that, in 
general, wave breaking occurred below the theoretical curves, except near the 
resonance points. At resonance, the experiments showed no wave breaking, whereas 
the numerical simulations seemed to show wave breaking where Long’s model 
indicates it should occur but only after a long time (which may have been too long for 
breaking to be observed during the course of the experiments). Interestingly, although 
breaking was observed to occur below the theoretical breaking curve corresponding to 
the horizontal lengthscale of these narrow obstacles, breaking was never observed to 
occur below the hydrostatic breaking curve. 

2.3. Linear theory ,for unsteady f low 
If we assume that the obstacle is small and its horizontal lengthscale large, and 
furthermore that the response of the fluid to the introduction of the obstacle into the 
flow is proportional to the amplitude of the obstacle, then the governing equations 
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(2.7t(2.9), to lowest order in the obstacle amplitude, can be reduced to the following 
equation for < 

(2.25) 

The boundary and initial conditions for this problem are the linearized hydrostatic 
forms of (2.1 1)-(2.14). These can be expressed as 

and 

a< dh -+U-= U- on z = O ,  
at 2x dx 

dh 
at dx 
-- a < -  U-(1-z /D)  at t = 0. 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

An identical equation and analogous boundary and initial conditions can be derived 
for @. Using standard Laplace and Fourier transform methods, we find that the 
solution of (2.25) when K =k n can be expressed as 

(2.30) 
h(x-(U+c,)t) +--A h(x-(U-c ) t )  

- u q  m=1 u+ c,  u- c, 

where 
N D  

c, = __ 
mn 

(2.3 1) 

is the long-wave phase and group speed for the mode m. This solution has a steady part 
and a transient part. The steady part clearly is an approximation to (2.19) that is valid 
for small h(x). The transient part consists of a sum over all the linear long-wave modes 
with each mode having two components, one that propagates against the oncoming 
flow and another that propagates with it. All these transients have the horizontal 
structure of the obstacle and propagate away from the obstacle as time increases. If 
c, < U, then the flow is supercritical with respect to mode m and both transients will 
be downstream of the obstacle and if c,  > U,  then the flow is subcritical with respect 
to mode m and the transient that propagates against the current will be upstream of 
the obstacle. As long as K =k n the steady solution is approached near the obstacle as 
t - t c o .  

If c, = U for some m = n, say, then K = n and the flow is critical with respect to 
mode n. In the limit as K+n (2.30) becomes 

+ h(x) (1 - z / D )  cos +transients, (2.32) 

where the transients are the same as in the corresponding non-resonant expression 
except with the singular term (containing the denominator U -  cn) excluded. (Note that 
when (2.30) and (2.32) are decomposed into individual sine modes they do not agree 
with GY’s (2.18) and (2.19). GY’s linear solutions correspond to the initial conditions 
for an impulsively ‘pushed up’ obstacle and not for an impulsively accelerated flow.) 
The amplitude of the component of mode n that is stationary with respect to the 
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obstacle increases linearly with time. So (2.32) is valid for early times only. For times 
greater than Ut/D - nnL/D, which implies { - a, the assumption that the flow 
response scales with the obstacle amplitude clearly is invalid. However, since L 9 D by 
assumption, linear resonant theory may be valid for a substantial period of time. 

Linear resonant theory can be used to estimate the time when wave overturning will 
occur when K z n. If we assume that wave overturning occurs when - D/nn, for 
reasons described in the previous section, then based on linear resonant theory 
this wave breaking time should scale as Ut/D - L/a. However, it would seem unlikely 
that linear theory would remain valid all the way up to the time of wave breaking. 

2.4. The GY mode1,for resonantjlow 
When the flow conditions are such that one of the modes is resonant, then as shown 
by (2.32) the component of the solution that propagates against the mean flow has an 
amplitude that grows linearly with time. Eventually, the amplitude of this mode will 
become large enough to invalidate the assumption that the flow response is 
proportional to the obstacle amplitude, although the amplitudes of the steady and 
downstream propagating components of this mode and all the components of the 
remaining (non-resonant) modes will remain linear for small enough obstacle 
amplitudes, A new scaling is required when the upstream propagating mode becomes 
nonlinear. 

Grimshaw & Yi (1991) develop a theory to describe the growth of the resonant mode 
for obstacles of small amplitude and moderate slopes. They assume that the vertical 
displacement of the fluid scales with the channel depth and that the time scale of the 
development of the flow scales with the slope of the obstacle (which is consistent with 
linear resonant theory). They make the additional assumption that the obstable follows 
the KdV relationship between the vertical and horizontal lengthscales: a / D  - (D/L)2 .  
These latter two assumptions imply that the flow develops with a time that scales as 
(D/U)(a/D)-”’. The use of the KdV scaling restricts the validity of the theory to 
obstacles that have a certain aspect ratio: the smaller the obstacle the larger its 
horizontal lengthscale must be for the theory to remain valid. 

Using the above scaling relationships, GY use a multi-scale perturbation expansion 
to obtain an approximate evolution equation for the amplitude of the resonant mode, 
which is in essence a time-dependent form of Long’s equation. In terms of the vertical 
displacement and assuming that the rzth mode is the resonant mode GY express the 
upstream propagating component of this mode as 

[(x, 2, t )  - A(x ,  t) sin ( n z z / D ) ,  (2.33) 
which is related to the perturbation streamfunction in this case by 

(2.34) 
and the amplitude function A is governed by the following evolution equation, which 
we will call the FLW equation, 

dA’ 1 c3 P A  c: N 
G(A,A’)-dY+(U-c,)A--”----- 1---A h = 0, (2.35) 

at  2 N 2 W  ND( c, 1 
where A = A(x,  t), A‘ = A(x’,  tj and the kernel function G(A, A’) is given by 

The variable 5 is defined as 

5 = z - A ( x ,  t)sin(nnz/D), (2.37) 
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from which the inverse relationships z = z(& A )  and z’ = z(& A’) can be derived. For 
these inverse relationships to be single valued, we must require 

(2.38) 

which is equivalent to requiring that there are no overturning streamlines in the flow 
or that the perturbation horizontal fluid speed nowhere equals or exceeds the mean 
speed, the same restriction imposed on Long’s model. It should be remembered that 
(2.38) is an approximate criterion for overturning flow since it represents only the 
upstream propagating component of the resonant mode. For strongly nonlinear and 
dispersive flows other modes may contribute to cause overturning streamlines to occur 
earlier or later than predicted by (2.38). The evolution equation derived by GY allows 
for small variations of the background stability profiles from uniform stability which 
results in an additional term in (2.35) that has basically an A2 dependence, but since 
we are concentrating on strictly uniform stratification we have neglected this term. 

The evolution equation (2.35) should be solved with initial conditions obtained by 
matching with the linear solution (2.32) for times during which both the linear and 
weakly nonlinear solutions are valid. For the case of an impulsively accelerated flow 
this matching procedure gives A(x,O) = 0. Incidentally, we get the same initial 
condition for the case of an obstacle that is impulsively ‘pushed up’, since the matching 
occurs with the resonant part of the linear solution which is the same in both cases. 

The kernel function G ( A ,  A’) given by (2.36) appears to be a rather daunting obstacle 
to the efficient numerical solution of the FLW equation. However, G is a function only 
of A and A’, both of which are strictly limited by (2.38), so a table of G values can be 
computed at the beginning of the calculation and values needed during the course of 
the time integration can be obtained efficiently by interpolation. Moreover, the table 
of G values needs to be computed only for one mode, since a straightforward but 
tedious calculation shows that the mode number n can be removed from G by scaling 
all the vertical lengths by D/n. So, the values of G for any mode can be obtained from 
the values of G calculated for, say, mode 1 simply by rescaling A and A’. 

Indeed, the mode number n can be eliminated from the entire FLW equation if the 
vertical lengths are scaled by D / n ,  the horizontal lengths by 0/di2 and the time by 
n1/’D/CI. Thus, a numerical solution of the FLW equation for, say, mode 1 can be 
rescaled to obtain a solution for any other mode. The usefulness of this similarity 
property of the FLW equation is diminished by the fact that the solution at the new 
mode number is not for the same obstacle, but for an obstacle whose height is reduced 
by a factor of n and whose horizontal lengthscale is reduced by a factor of di2. 

3. Numerical methods 
3.1. The spectral model 

We use a spectral collocation method (Canuto et al. 1988; Boyd 1989) to solve the 
equations of motion in their vorticity-streamfunction form, as expressed in (2.7)-(2.9) 
with boundary conditions (2.1 1) and (2.12). A Fourier series is used in the horizontal 
direction (typically with 256 collocation points), and Chebyshev series in the vertical 
(typically with 40 or 65 points). An absorbing (and periodic) sponge layer is added at 
both lateral boundaries of the computational domain, covering about & of the 
computatiohal domain on each side. We found that there was negligible reflection from 
the downstream sponge layer, but significant reflection from the upstream one. 
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Therefore we always placed our obstacle in the computational domain such that any 
disturbances would not reach the upstream sponge layer during the duration of the 
computation. 

In the vertical direction, we removed the obstacle from the lower boundary 
condition by transforming the equations to terrain-following coordinates ( X ,  2)  
defined as 

such that in the computational domain the flow is confined between two parallel 
horizontal boundaries at 2 = 0 and Z = D. To compare with the results of the FLW 
equation, the vertical displacement computed using the spectral method was expanded 
in a sine series. Since in general 6 is not zero on the lower boundary, as required for 
any numerical evaluation of a finite sine series, we actually found the sine transform 
of the related function: 

m 

c(X, 2, t )  - <(X, 0, t ) ( l  - Z / D )  = C A,(x, t )  sin (mzZ/D). (3.2) 
m=l 

Sufficiently far from the obstacle h z 0, then <(X, 0, t )  z 0, and A,(x, t )  can be 
identified as the amplitude function of the mth normal mode. 

A third- or fourth-order Runge-Kutta scheme is used to timestep the equations. We 
use the low-storage version of Runge-Kutta described by Canuto et al. (1988) that has 
good numerical stability properties. The elliptic equation (2.7) is solved using an 
iterative technique. This approach is based on a direct method that Canuto et al. (1988) 
refer to as a matrix-diagonalization scheme. Since we have used a non-conformal 
mapping to terrain-following coordinates, this direct method is only approximate, and 
we use iteration to refine the solution. Typically, four or five iterations were sufficient 
to achieve the desired accuracy. 

Wave overturning or breaking occurs over a wide range of the parameter space in 
this study. We define the onset of wave breaking as when the vertical derivative of the 
density first vanishes, or equivalently in terms of the vertical displacement when 

-= 1, 
a2 

(3.3) 

anywhere in the flow. We call the time at which this occurs the wave breaking time t,, 
since it is when an isopycnal becomes vertical and if the wave continues to develop will 
result in the isopycnal overturning. 

Wave breaking, as well as some anomalies associated with the impulsively accelerated 
obstacle initial conditions (to be discussed in more detail in the next section), generate 
small-scale disturbances that are not resolved by our model and lead to aliasing errors 
and eventually numerical instability. To eliminate these difficulties we employ a high- 
order high-wavenumber filter in both the horizontal and vertical directions. This 
procedure allowed us to compute a numerically stable solution well past the time at 
which constant density surfaces overturned. 

The drag on the obstacle is given by 

* dh 
(3.4) 

where P is the pressure on the lower boundary. We computed this quantity by first 
integrating (3.4) by parts, evaluating the x-derivative of the pressure from the 
horizontal momentum equation and finally using the trapezoidal rule to perform the 
integration over the length of the computational domain. 
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FIGURE 4. A plot of the FLW equation kernel function G(A, A )  as a function of A 
for mode n waves. 

3.2. The GY model 
The FLW equation was solved numerically using essentially the method described by 
GY and Yi & Warn (1987). The key step of this method is to differentiate (2.35) with 
respect to x to obtain the following integral equation for aA/at :  

This is a Volterra integral equation of the second kind whereas (2.35) is a Volterra 
integral equation of the first kind. Equation (3.5) is preferred because the inversion of 
Volterra integral equations of the second kind is numerically stable whereas the 
inversion of equations of the first kind is not. We note in passing that except for the 
form of the time dependence (3.5) bears a close resemblance to the forced KdV 
equation. 

As in the spectral model, we assume that the motion is periodic in x with period 
equal to the length of the computational domain and insert ‘sponge’ layers at the two 
computational boundaries. The spatial derivatives are evaluated spectrally by 
expanding A in a Fourier series in x. A standard fourth-order quadrature-type scheme 
is used to solve (3.5) for aA/c?t and then A is advanced in time using the same third- 
order Runge-Kutta scheme as used in the spectral model. This scheme did not require 
any filtering or smoothing to keep it stable. 

To increase the speed of the calculation, the functions G(A, A )  and c?G(A, A’)/aA 
were evaluated in advance on a uniform grid over the domain - D/nn < A ,  A’ < D/nn 
and needed values were obtained during the course of the time integration by 
interpolation. For all the calculations presented here we used a grid of 128 points for 
both A and A’. Figures 4 and 5 are plots of these functions as they were used in the 
solution of (3.5). In general these functions are very well behaved except in the 
neighbourhood of the maximum allowed amplitudes, when (2.38) is an equality, where 
both functions have singularities. These singulari ties, which have not been noted by 
previous investigators, must be treated very carefully as the flow approaches breaking 
amplitude. We ensured that we adequately resolved these singularities by checking for 
consistency with increased resolution and by checking wave breaking times with the 
fully nonlinear model. 
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FIGURE 5. A surface plot of the function [G(A, 4 1 - l  W ( A ,  A’)/BA as a function 
of A and A’ for mode n waves. 

For the FLW equation, we define the wave breaking time t,, as when (2.38) is first 
violated. In computing the wave-breaking time, errors due to inadequate resolution of 
the singularity in the kernel function are most noticeable at linear resonance, since the 
wave-breaking amplitude is approached very slowly in this case and any small error 
will produce premature breaking. As an example, we compare our numerical solution 
of the FLW equation with GY’s solution for the case shown in GY’s figure 9(a) (which 
corresponds to K = 1, a / D  = 0.1 and L I D  = 1.33). GY computed breaking to occur 
when U t / D  GZ 11, whereas we obtained Ut /D = 156 and the fully nonlinear model 
gives Ut /D z 276. (We comment that this is a particularly difficult case for computing 
the breaking time, because the vertical displacement increases initially very rapidly to 
near breaking amplitude but then its growth rate slows such that the final small- 
amplitude increase needed to achieve breaking is approached very slowly. Therefore, 
even small errors in this final but long-time approach to breaking amplitude will lead 
to premature breaking.) 

An expression for the drag on the obstacle that is consistent with the approximations 
made in deriving the FLW equation is 

where the quantity in square brackets is the pressure at z = 0. We computed this 
integral using a fourth-order quadrature rule over the length of the computational 
domain. 

4. Results 
4.1. Initial conditions 

Our initial conditions, which mimic what is done in laboratory tow-tank experiments, 
lead to some difficulties for our inviscid and non-diffusive spectral model. For an 
impulsively accelerated flow the isopycnal surfaces initially are horizontal and 



14 J. W. Rottman, D .  Broutman and R. Grimshaw 

UtlD = 1 .O UflD = 1.0 

2.0 2.0 

3.0 

4.0 4.0 

5.0 5.0 

FIGURE 6 .  Contour plots of perturbation density for two types of initial conditions at the times 
U t / D  = 1.0, 2.0, 3.0, 4.0 and 5.0. The parameter values for these plots are, K a / D  = 0.2. L / D  = 2.0 
and K = 1.2. Each plot shows the entire depth but only a small region near the obstacle of the length 
of the computational domain. ---, positive perturbations ; ~ , negative perturbations : (a) 
impulsively accelerated flow, and (b)  impulsively ' pushed-up' obstacle. 

therefore several of them intersect the obstacle surface. Since the fluid particles initially 
on the obstacle surface cannot leave that surface, a small region with a horizontal 
density gradient is generated along the bottom boundary when the initial non-uniform 
distribution of density is swept over the obstacle crest after the flow is initiated. This 
small blob of non-uniform density is advected downstream by the mean flow and with 
time this density gradient sharpens continuously as the heavier fluid advances into the 
lighter fluid. Since there is no diffusion in our formulation, there is nothing to stop this 
density gradient from getting ever more sharp. Such a sharp gradient is very difficult 
to resolve numerically and eventually, if spectral filtering is not used, saturates the 
spectrum and leads to a breakdown of the calculation. This small abnormality can be 
seen propagating downstream at the mean flow speed in all of our spectral simulations. 
The alternative initial conditions in which the obstacle is 'pushed up' impulsively at the 
beginning does not produce this problem since the density is always uniform on the 
obstacle surface. 

Figure 6 illustrates the differences in these two types of initial conditions. Figure 6(a)  
is a series of contour plots of the perturbation density for the early time motion of an 
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FIGURE 7. The amplitude function A(x,  t)  for the resonant mode of vertical displacement as computed 
by the spectral model for the case with. K u / D  = 0.2, LID = 2.0 and K = 1.2 corresponding to the 
cases shown in figure 6. The obstacle is centred at x / D  = 10: (a) impulsively accelerated flow, and (b) 
impulsively ' pushed-up' obstacle. 

impulsively accelerated flow, and figure 6(A)  is a similar series for the case of an 
impulsively ' pushed-up ' obstacle (actually, we used the linearized form of the initial 
condition corresponding to the obstacle being ' pushed up ' impulsively, as described in 
g(2.1)). The flow patterns shown in figure 6 for these two cases are very similar after 
Ut /D z 2, except for the obvious small contracting blob of negative perturbation 
density in the impulsively accelerated flow. This blob can be seen propagating at the 
mean flow speed along the bottom surface downstream of the obstacle in figure 6(u). 
By U t / D  z 4 this small blob has contracted into a very tight knot, and the calculation 
could not be continued much beyond this time unless the spectral filter was introduced 
to prevent further tightening. The ' pushed-up ' obstacle initial condition had none of 
these problems, as can be seen in figure 6(b). 

Another look at this initial density anomaly is provided by the plots of time 
evolution of A ( x ,  t )  shown in figure 7. For the impulsively accelerated flow (figure 7u)  
two disturbances can be seen propagating rapidly downstream. The fastest disturbance 
is a small wave of depression that propagates faster than the mean flow speed. This is 
the mode 1 transient that propagates in the direction of the mean flow. The other 
downstream propagating disturbance is a positive anomaly that propagates with the 
mean flow speed. This is the density anomaly described above. This density anomaly 
is seen in all the modes, showing that it is a very broadband disturbance. For the 
impulsively ' pushed-up ' obstacle (figure 7 b)  the only disturbance seen propagating 
downstream is the mode 1 wave transient. In this case, the transient is a wave of 
elevation. 

Even though the 'pushed-up' obstacle is a 'cleaner' type of initial condition, we 
(chose to use the impulsively accelerated initial condition because it more closely 
resembles the initial conditions used in laboratory tow-tank experiments. Of course, in 
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FIGURE 8. The amplitude function A(x, t )  for the resonant mode of the vertical displacement as 
computed by the spectral model for the cases with Ka/D = 0.1, LID = 2.0, and (a) K = 0.95, (b) 
K = 1.00, and (c) K = 1.20. The obstacle is centred at .Y/D = 20. 

the laboratory experiments this type of anomaly will be diminished by such real fluid 
effects as viscosity and diffusion. In our numerical simulations we successfully 
controlled the density anomaly with spectral filtering. 

4.2. The j r s t  resonance point ( K  = 1) 
In this section we describe our results for the parameter space in the vicinity of the first 
resonant point at K = I .  Using both the spectral model and the FLW equation, we 
performed calculations for about 50 different combinations of the flow parameters. 
Specifically, the ranges of the flow parameters for which we performed calculations 
were: 0.05 < Ka/D < 0.2, 0.25 < L I D  < 8.0 and 0.95 < K Q 1/(1-2a/D). The maxi- 
mum value of K used in this range defines the subcritical boundary of the resonance 
region, as given by (2.22). In our calculations we fixed Ka/D and varied K, since, as 
discussed previously, Ka/D is a more appropriate measure of nonlinearity than is a/D.  
We note that for LID 2 2 we observed breaking only within the regions of the 
parameter space delineated by the hydrostatic breaking curve (2.20). 

The evolution in time of the amplitude function A(x,  t )  for the resonant mode as 
computed by the spectral model is plotted in figure 8 and by the GY model in figure 
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FIGURE 9. The amplitude function A(x,t) for the resonant mode of the vertical displacement as 
computed by the GY model for the cases with Ka/D = 0.1, L / D  = 2.0, and (a) K = 0.95, (b) K = 1.00 
and (c) K = 1.20. The obstacle is centred at s / D  = 20. 

9 for the three cases with Ka/D = 0.1, L/D = 2.0, and K = 0.95, 1.00 and 1.20. These 
cases, which are plotted as in the parameter space shown in figure 3 ,  were chosen 
as representative flows for obstacles of moderate amplitude and slope. The results 
shown in both figures 8 and 9 have been computed up to the wave-breaking time as 
calculated from the GY model, except for the case with K = 0.95 for which the flow 
approaches a steady state and there is no breaking. These wave-breaking times, as well 
as the horizontal positions where breaking occurs, are listed in table 1. Note that for 
these cases the GY model always underestimates the spectral model breaking time by 
about 25 % to 30 %. Otherwise, apart from the already discussed start-up transient, 
which of course does not appear in the GY model, the two sets of computed amplitude 
functions are qualitatively and quantitatively nearly identical. 

The plots in figures 8 (a )  and 9 (a)  show that for the case with K = 0.95 the crest that 
develops directly over the obstacle has reached a constant amplitude by Ut /D M 15 and 
the flow downstream is detaching from the flow directly over the obstacle, eventually 
leaving a symmetrical bulge over the obstacle, which is characteristic of steady 
supercritical flows. For K = 1 .O a crest again develops directly over the obstacle but the 
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FIGURE 10. A plot of IA(xbr, t)l as a function of time corresponding to the calculations shown in figures 
8 and 9, where xbr is the horizontal position at which wave breaking first occurs : -, spectral model; 
_ _ _  , GY model. A value of IAl 2 D / n  indicates wave breaking in the GY model. 

K C't,,lD (-L-xo)lD 

0.95 * (*) * (*) 
1.00 79 (50) 4.4 (4.7) 

1.20 27 (21) 1.4 (1.9) 

1.05 35 (28) 2.8 (3.2) 
1.10 31 (24) 2.2 (2.5) 

TABLE 1. The time t,, and horizontal position x,, of wave breaking for the spectral model calculations 
shown in figure 8. The values in parentheses were obtained from the GY model calculations 
shown in figurc 9. In these calculations KalD = 0.1, and LID = 2.0. The obstacle is centred at x, 
and note that for the obstacle shape used the horizontal position of maximum slope is 
(x-x,)/D = + ( L / D ) / t ! 2  z +_ 1.4. The symbol * means that no wave-breaking occurred. 

first downstream trough steadily deepens, rapidly at first and more slowly later, until 
it reaches breaking amplitude. Since the amplitude function is negative where it reaches 
breaking amplitude, we can deduce from (2.33) and (3.3) that the vertical position of 
breaking must be located at the upper boundary. For K = 1.20, the development of the 
flow to breaking amplitude is similar to the K = 1.0 case, except that the flow develops 
more rapidly and the crest that develops over the obstacle starts to propagate 
upstream. 

The absolute value of A at a fixed location downstream (where breaking first occurs) 
is plotted as a function of time in figure 10 for the cases corresponding to those plotted 
in figures 8 and 9. The solid lines show the results for the spectral model and the dashed 
lines for the G Y  model. For the cases in which wave breaking occurs, we have plotted 
these lines up to the time this is predicted by the GY model (which as shown in table 
1 is always less than the time predicted by the spectral model). For times up to 
Ut/D E 10 the amplitude in all these cases increases nearly linearly with time as 
predicted by linear resonant theory. For later times the deviation from linear growth 
is a function of K. For K = 0.95 the growth stops altogether, for K = 1.0 the growth 
becomes very slow but yet still eventually reaches breaking amplitude, and for K > 1 
the growth is faster the larger the value of K. In fact for K = 1.20 the growth is nearly 
linear all the way to breaking. Note that the amplitude of the resonant mode calculated 
from the spectral model is always greater than that from the GY model even though 
the GY model reaches breaking amplitude sooner. This indicates that higher modes 
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FIGURE 1 I .  A plot of the drag as a function of time corresponding to the calculations shown in 
figures 8 and 9 :  -, spectral model; ---, GY model. 

(mostly the second mode) tend to inhibit breaking as the amplitude increases and 
delays the onset of breaking in the spectral model. Otherwise the two models are 
qualitatively very similar. The FLW equation does a good job of reproducing the time- 
dependent behaviour of the full spectral model. 

The conclusion that the FLW equation represents the full calculation well is 
reinforced by the drag (an integral measure of the flow) computed from the two models 
and plotted in figure 11. Again, the spectral results are plotted as solid lines and the GY 
model results as dashed lines. The two methods produce very similar results, with the 
GY model slightly under-predicting the drag except when K = 1.2 for which it slightly 
over-predicts the drag. These results show that for K = 0.95 the drag asymptotically 
approaches zero, indicating that the flow eventually becomes symmetric about the 
obstacle. For K 2 1 .OO the drag is non-zero when breaking occurs and the indications 
are that the drag remains non-zero after breaking. This implies that the flow in the 
neighbourhood of the obstacle is approaching a permanent asymmetrical form with 
high pressure on the upstream surface and lower pressure on the downstream surface. 

Figure 12 shows a time sequence of density contour plots computed by the spectral 
model for thecase with Ku/D = 0.1, L / D  = 2.0 and K = 1.2. These plots show how the 
whole flow field would look in the laboratory for times after the obstacle is accelerated 
to a constant speed. Note the development of the deep trough downstream of the crest 
that breaks at the horizontal position near the maximum slope of the obstacle and at 
the vertical position near the upper boundary just after Ut /D 3 25. Also note the rapid 
development of a crest over the obstacle, and that this crest eventually propagates 
upstream. After the initial breaking the trough begins to widen and the next crest 
downstream begins to increase in amplitude and eventually also breaks, but this time 
the breaking occurs near the bottom boundary. In all of our numerical experiments 
wave breaking occurred downstream of the obstacle crest. 

So far we have presented the results for an obstacle that we have described as of 
moderate amplitude and moderate slope. For higher amplitudes, we found that the 
flow looks much the same as we have shown above except that the flow develops more 
rapidly. Narrower obstacles produce more horizontal structure downstream and a 
different dependence of the breaking time on obstacle dimensions. This is illustrated in 
figure 13, for K = 1.2 and Ka/D = 0.1 and 0.2. For large fixed L / D  the breaking times 
are simply inversely proportional to a / D ,  but for small fixed L I D  the breaking times 
appear to be inversely proportional to ( L Z / D ) ~ .  For fixed a / D ,  the breaking times show 
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FIGURE 12. Contour plots of the density field as computcd by the spectral model for the case with 
Ka/D = 0.1, L / D  = 2.0 and K =  1.2. The domain length is 400 and the contour interval is 
Applp,, = 0.0025. In this case, breaking occurred at U t l D  x 27. 
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FIGURE 13. The breaking time as a function of L I D  for KulD = 0.1 and 0.2 and K = 1.2: 
~ -, spectral model; ---, GY model. 

the interesting behaviour that they are large for both large and small L / D  and have a 
minimum near LID z 1.0. More specifically, for large L I D  the breaking times are 
simply proportional to L I D ,  whereas for small L I D  the breaking times are inversely 
proportional to 

The above results suggest that with fixed Kand L I D  9 1 the breaking times tbr  scale 
as Ut,,/D - L / u ,  which is the scaling for the resonant mode as predicted by linear 
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FIGIJRE 14. The non-dimensional breaking time, scaled by L/u, as computed by the spectral model 
as a function of LID. The open symbols are for KuID = 0.1 and the solid symbols for Ka/D = 0.2 : 
Oand.,K= 1.0; O a n d + , K =  1.05;Oand.,K= 1.2.Thecurvesaresubjectivefitstothedata: 
_-- - - -  , K =  1.0; -, K =  1.05; ---, K =  1.2. 

hydrostatic theory; see (2.32). Figure 14 shows that this scaling is valid for KLID > 3, 
and in this regime the data is well represented by the empirical formula: 

with n = 1 and ,!? z 11.0. Furthermore, (4.1) is a good fit to the breaking time 
computed by the GY model if it is multiplied by approximately 0.75. Note from 
table 1 that the FLW equation very accurately predicts the horizontal position at which 
wave breaking first occurs. 

For L I D  -+ 1 a stationary phase approximation to the non-hydrostatic linear 
resonant solution suggests that the breaking times should scale as Ut, , /D - 
(afD)-3(LfD)-3, which compares well with our limited number of results for 
L I D  < 0.5. 

Figure 13 shows that there is some variation in the agreement between the breaking 
times computed by the spectral model and the GY model with obstacle amplitude and 
slope. We find that the GY model over-predicts this time for small L I D  and under- 
predicts it for large LID.  Hence, there is an intermediate range of L I D  over which the 
GY model predicts a breaking time that agrees quite well with that computed by the 
spectral model. The value of L I D  where the GY model is most accurate varies with the 
obstacle amplitude and we find empirically from a limited data set that it appears to 
follow the relationship 

wherefiK) is some (as yet not fully determined) function of K. This is of course the 
assumed scaling relationship in the FLW equation. If the obstacle satisfies (4.2) then 
the FLW equation agrees very well with the spectral model cven for relatively large 
obstacle amplitudes, but even if the obstacle does not satisfy (4.2) the results of the 
FLW equation are generally qualitatively in agreement with the spectral model and for 
obstacles with moderate to low slopes is at least within 25%, or  so, of the spectral 
model results. 

Hanazaki (1992,1993) made a series of comparisons between numerical solutions of 
the full Navier-Stokes equations for moderate to large Reynolds numbers and 
numerical solutions of the FLW equation for a range of values of K similar to what we 
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FIGURE 15. The amplitude function A(x,  I)  for the first mode of the vertical displacemcnt as computed 
by the spectral model for the cases with Ku/D = 0.1, L / D  = 1.0, and (a) K = 1.4, (h) K = 1.5 and (c) 
K = 1.6. The obstacle is centred at x l D  = 30. 

have done here. All of his calculations were for obstacles with L I D  = 0.25, and as we 
have shown this horizontal scale falls in the narrow-obstacle regime. Hanazaki found 
good qualitative comparison between the GY model and his fully nonlinear model, but 
he made few quantitative comparisons of such things as the time to wave breaking. 
With obstacles of such small horizontal scale we would expect these times to be quite 
large, and in fact Hanazaki's fully nonlinear calculations do not show any signs of 
breaking up to U t / D  = 200, which is the time at which he terminates his calculations. 
In only one calculation (K  = 1.05 and a / D  = 0.15) did Hanazaki's numerical solution 
of the GY model predict wave breaking, which occurred at U t l D  = 57. We computed 
this case with our numerical method of solving the GY model and obtained wave 
breaking at U t / D  = 87. We attribute the difference to our more careful treatment of 
the kernel singularity. 

Lamb (1994) compared the breaking times from two of his numerical solutions of the 
fully nonlinear inviscid equations with the breaking times computed by GY. The two 
cases are for K =  1.05, a / D  = 0.04, L / D  = 2.12 and K = 1.21, a / D  = 0.14, 
L / D  = 1.14. Lamb's fully nonlinear model gave the breaking times for these two cases 
as Ut /D M 82 and Ut lD z 13.5, respectively, whereas GY found U t l D  z 36 and 
U t / D  z 5. Actually, these two cases are derived from one calculation done in GY 
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FIGURE 16. A plot of the drag as a function of time for the case with K = 1.4, 1.5 and 1.6, 
corresponding to the calculations shown in figures I5 : -, spectral model; -- -, GY model. The GY 
curves are plotted up to the time that wavc breaking occurs in this model. 

(shown in their figure 10a) by rescaling the original non-dimensional results. We 
computed these two cases with our numerical implementation of the GY model and 
obtained the breaking times of U t / D  z 65 and U t / D  z 9, respectively. Again we 
attribute the discrepancies between our results and GY's results to our more careful 
treatment of the kernel singularity near breaking amplitudes. 

4.3. The approach to Long's steudy solution (1 < K < 2) 
We now consider the region of the parameter space shown in figure 3 where we would 
expect to obtain valid steady solutions of Long's model. In figure 15, we show the 
amplitude function A(x,  t )  for mode 1 waves as computed by the spectral model for 
three cases with K a / D  = 0.1, L / D  = 1.0 and K = 1.4, 1.5 and 1.6. All of these three 
cases, which are plotted as x symbols in the parameter space shown in figure 3, should 
be well within the region where there are valid steady solutions, yet even up to 
Ut /D = 100 the solutions do not appear to be approaching a steady state. Instead, they 
appear to be persistently generating upstream propagating waves. 

Further evidence of the non-steady character of these flows is shown in the time 
series of the drag on the obstacle plotted in figure 16. For K = 1.4 and 1.5 the 
oscillations in the drag have quite large amplitude (which may even be increasing with 
time) and an approximately constant period. For K = 1.6, the period also appears to 
be constant, but the amplitude decays to a much smaller value after about U f / D  z 25, 
and remains at this smaller but non-zero amplitude thereafter. For 1.7 < K < 2.0 (not 
shown), the drag behaved similarly to what was observed at K = 1.6. In general, we 
found that the period of these drag oscillations is mainly a function of K and only a 
weak function of the amplitude and horizontal lengthscale of the obstacle. The 
amplitude and mean value of the drag oscillations seem to depend more on the 
dimensions of the obstacle. 
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FIGURE 17. The evolution of the vertical displacement {(x ,  z ,  t )  evaluated at mid depth, z / D  = 0.5, for 
the case with Ku/D = 0.1, L / D  = 6.0 and K = 1.5: (a) spectral model and (b) Long’s model. The 
obstacle is centred at x / D  = 60. 

Also in figure 16 we have plotted the drag as computed from the GY model, for 
mode 1 waves, for all three cases. Even though these values of K are technically out of 
the range of validity of the FLW equation, the period of the drag oscillations is 
reproduced fairly well. On the other hand, the GY model computed drag seems to have 
a positive offset and, at least for K = 1.4, the oscillations decay much faster than in the 
spectral model. 

We found that for large values of LID,  a steady-state solution is approached rapidly 
in the neighbourhood of the obstacle, and the steady solution approached in the 
spectral numerical simulation is indeed the steady solution of Long’s model. An 
example of this kind of result is shown in figure 17(a). This plot shows the vertical 
displacement at mid-depth as a function of x and t for the case with Ka/D = 0.1, 
L / D  = 6.0 and K = 1.5. It is clear in this plot that after the transients propagate away 
from the obstacle that a steady dip remains over the obstacle, as is predicted by the 
long-wave version of Long’s model. This steady-state solution is plotted in figure 17(b) 
for convenient comparison. 

Linear theory helps to explain the oscillatory behaviour of the solutions for 
sufficiently narrow obstacles. According to linear theory, the internal waves in a 
channel have a continuous spectrum in the horizontal with wavenumber k and a 
discrete spectrum in the vertical with wavenumbers m,, which have the values, 

m, = nn/D (n = 1,2,. . .), (4.3) 

where IZ is the mode number. In a reference frame in which the mean flow in the channel 
is zero, the horizontal phase speed c, of these waves is given by 
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FIGURE 18. The period T, of the most persistent upstream propagating mode 1 wave based on linear 
theory for 1 < K < 2 and comparison with the period of oscillation of the drag: -, linear theory; 
0, Castro et al. (1990); 0, Lamb (1994); A, Paisley et nl. (1994); x ,  present spectral model (for 
Ku/D = 0.1, LID = 1.0). The Castro et al. data are from experiments using a vertical fence with 
height a /D = 0.18 or a Witch of Agnesi obstacle with a/D = 0.10, 0.20 and L I D  = 0.08, 0.16. The 
Lamb data are for a Witch of Agnesi obstacle with LID = 0.17. Lamb does not identify the obstacle 
amplitude, since he claims the penod does not depend on it. The Paisley et nl. data are for a vertical 
fence with height a/D = 0.10 and a Reynolds number of 100. 

and the horizontal group speed 7 ,  by 

We seek the horizontal wavenumber k ,  of the ‘most persistent’ wave; that is the 
wave that remains oscillating near the obstacle for the longest time. Such a wave should 
have a group speed equal in magnitude but opposite in direction to the oncoming flow 
speed U (and note that such a wave will have a horizontal phase speed with a 
magnitude that is greater than U ) .  So, from (4.3) and (4.5) we derive, 

The period T, of this most persistent wave then is given by 

We have plotted T, as a function of K for n = 1 along with the measured periods of 
the drag oscillations from our spectral model simulations over the range 1 < K < 2 in 
figure 18. The agreement between linear theory and our numerical simulations is very 
good. 

Linear theory also helps explain why the oscillations are not observed for wide 
obstacles. In figure 19 we have plotted as a function of k the Fourier transform h of 
our obstacle shape for two different widths: L / D  = 1 and 2, and opposite this graph 
in the same figure we have plotted k ,  as a function of K.  This figure is convenient for 
determining the magnitude of the Fourier transform of the obstacle at the ‘most 
persistent’ wavenumber for any specified value of K. For example, taking K = 1.5 we 
find the value of k, in the graph on the right and read across to the graph on the left 
to see that the obstacle transform has significant amplitude if L I D  d 1.0 but is nearly 
zero if LID >, 2.0. Consequently, in an experiment or numerical simulation with K 
fixed, we may expect to see the oscillations in the drag for small L I D  but not for large 
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FIGLXE 19. (a)  The Fourier transform of the obstacle shape, A@), as a function of the horizontal 
wavenumber k for L I D  = 1 .O and 2.0, and (b) the horizontal wavenumber k ,  of thc most persistent 
mode 1 wave as a function of K, based on linear theory. Comparing (a) and (h) shows that when 
K > 1.6, or so, then in order for the most persistent wave to exist with any significant amplitude. we 
must have an obstacle with dimensions such that LID < 1.0. 

LID.  Looking at this another way, with L I D  fixed, we might expect to see the 
amplitude of the oscillations in the drag to decrease as K is increased because k ,  is an 
increasing function of K (for fixed mode number). 

It is interesting that linear theory explains the period and the L I D  dependence of the 
drag oscillations, even for internal wave amplitudes that are weakly nonlinear. 
However, linear theory also predicts that these oscillations should decay with the time 
dependence t-''' and at least for some of the cases shown in figure 16 the oscillations 
seem more persistent than this. So nonlinearity apparently affects the persistence of the 
oscillations more than their period. 

Lamb (1994) observed similar oscillations of the drag in his numerical simulations 
of inviscid stratified flow over topography when I < K < 2. Lamb reported results on 
the period of the drag oscillations for flow over a Witch of Agnesi obstacle with half- 
width L I D  = 0.17, which is substantially narrower than most of the obstacles we used 
in our simulations. He found, as we have, that the period is insensitive to the obstacle 
amplitude. We have plotted Lamb's values for the period in figure 18. Linear theory 
as well as our numerical simulations agree very well with most of Lamb's numerical 
simulations. The only significant discrepancy is that Lamb's values for the period seem 
to approach a constant ( M 9.8 D / U )  as K approaches 2, whereas the values from our 
numerical simulations continue to decrease (reaching about 4.4 D /  U at K = 2) 
following the linear theory curve. 

Castro. Snyder & Baines (1990) also observed persistent oscillations of the drag in 
their tow-tank experiments of uniformly stratified flow over obstacles. Several different 
obstacle shapes were used in these experiments: a two-dimensional fence with height 
a / D  = 0.2 and two Witch of Agnesi obstacles with heights a / D  = 0.1 and 0.2 and 
corresponding half-widths L / D  = 0.08 and 0.16 (actually, it was the same Agnesi 
obstacle but with different values of 0). Such narrow obstacles invariably produced 
boundary-layer separation in the lee of the obstacles which lead to an unsteady wake 
flow and associated mixing, something that cannot be reproduced in inviscid numerical 
simulations. Probably as a result of this, there are some significant differences between 
the results for the tow-tank experiments and the numerical simulations. First, 
persistent oscillations in the drag were observed in the experiments only when 
1.4 < K < 2.0 (in the experiments oscillations were also observed when 2.5 < K < 3.0, 
but we are confining our attention here to 1 6 K 6 2), whereas in the inviscid 
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]FIGURE 20. The amplitude function A ( x ,  t )  for the resonant mode of the vertical displacement for the 
cases with Ku/D = 0.1, L / D  = 1.0, and K = 2.0, (u)  spectral model and (b) GY model. The obstacle 

centred at .x/D = 20. 

numerical simulations oscillations were observed over the whole range 1.0 < K < 2.0. 
I;;econdly, Castro et ul. found that for fixed K the period had a weak dependence on the 
amplitude of the obstacle which is not seen in the numerical simulations. Despite these 
clifferences, we have plotted in figure 18 Castro et al.’s observed periods at values of K 
for which oscillations exist and find that they agree fairly well with linear theory and 
with the numerical simulations. 

More recently, Paisley, Castro & Rockliff (1994) observed oscillations in the drag in 
their numerical simulations of viscous laminar flow of a uniformly stratified fluid over 
a vertical barrier. All these simulations were done with a barrier height of a / D  = 0.1 
and a Reynolds number of 100. They observed persistent oscillations in the drag for 
11.3 6 K 6 1.6 and decaying oscillations for 1.7 6 K d 2.0. We have plotted their 
results for the period of the drag oscillations in figure 18 and again the agreement with 
(:bur inviscid numerical simulations and with linear theory is extremely good except near 
iY= 2.0, where their periods appear to approach a constant value of about 7 .70 /U  
instead of the linear theory result of about 4.4D/U. 

4.4. The second resonance point ( K  = 2) 
I n  this section we describe our results of the parameter space in the vicinity of the 
sixond resonant point at K =  2 .  Again, using both the spectral model and the GY 
model we performed a large number of calculations for a variety of combinations of 
the flow parameters. Specifically, the range of flow parameters for which we performed 
calculations was: 0.05 < Ku/D < 0.2 and 1.95 < K < 2/(1-2a/D). However, for 
brevity we will discuss only the cases with K = 2, plotted as 0 in the parameter space 
i n  figure 3, since analogues of most of the conclusions reached in $4.2 also apply here. 

Comparisons of the resonant amplitude function A(x,  t )  at K = 2 as computed by 
both the spectral model and the GY model are shown in figure 20 for L I D  = 1.0 and 
in figure 21 for L I D  = 2.0. The evolution of these amplitude functions is shown up to 
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FIGURE 21. The amplitude function A ( x ,  t )  for the resonant mode of the vertical displacement for the 
cases with Ka/D = 0.1, LID = 2.0, and K = 2.0, (a) spectral model and (b) GY model. The obstacle 
is centred at x / D  = 20. 
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FIGURE 22. A plot of the drag as a function of time for the case with K = 2.0, Ka/D = 0.1 with 
(a) L/D = 1.0 and (6) LID = 2.0: -, spectral model; ---, GY model. 

the initial occurrence of wave breaking, which happens to be for the GY model. As was 
the case at the first resonance point, the wave-breaking time predicted by the GY model 
is about 25% short of the time predicted by the spectral model. Otherwise, in both 
cases the GY model reproduces the spectral model results very well. 

Similar plots for the evolution of the first mode as computed by the spectral model 
(not shown) have the expected behaviour. For L I D  = 1.0 a series of mode-1 waves 
propagate upstream while a fairly steady dip forms over the obstable, which is typical 
subcritical behaviour. There is some indication of periodic unsteadiness due to the 
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continuous series of upstream propagating waves. For L I D  = 2.0, the situation is 
much the same except that only one mode-1 wave propagates upstream and after that 
wave leaves the vicinity of the obstacle the dip that forms over the obstacle is very 
steady. 

We have plotted the time series for the drag as computed by the spectral model and 
the GY model for L I D  = 1.0 and 2.0 in figure 22. For L / D  = 1.0 (figure 22a), the 
spectral model produces a drag that has the same mean time evolution as the GY 
model, but it has a persistent oscillation about the mean that does not appear in the 
GY calculation. These oscillations, due to mode 1 waves, are similar to what we 
described earlier in $4.3, except the oscillations at K =  2.0 are weaker and follow a 
more strongly non-zero mean. For L I D  = 2.0 as shown in figure 22(b), the oscillations 
in the drag are greatly reduced and the GY calculation is an excellent approximation 
to the fully nonlinear calculations. By analogy with the results at K = 1, we would 
expect the drag in the present cases to asymptote to a small positive value. However, 
e.k,tending these calculations much further in time, we find that the drag continues to 
decline although at a very slow rate. As best we can tell the drag in the present cases 
el ther asymptotes to a very small positive value or zero. 

For L I D  % 1, we find that the wave-breaking times as computed by the spectral 
model are described well by the empirical formula (4.1) with n = 2. 

5.  Summary and conclusions 
We have reported numerical results for the flow in a channel of a uniformly stratified 

Bloussinesq fluid over isolated bottom topography. We used a spectral model to solve 
the fully nonlinear inviscid two-dimensional equations, with the flow impulsively 
sl arted from rest. For comparison, we have integrated numerically the finite-amplitude 
long-wave (FLW) evolution equation derived by GY. We have restricted attention to 
obstacles of small to moderate amplitude and slope and to values of Knear or between 
the resonances at K = 1 and K = 2. We did not make a concerted effort to verify the 
shape of the hydrostatic ‘breaking curve’ (2.20) over the entire range 1 < K d 2. 
However, we did find that for sufficiently long hills in the neighbourhood of the 
resonant points the breaking curve accurately delineates the regions of the parameter 
space where breaking would and would not occur. 

Near K = 1, the time to wave breaking (if it occurs), which is an indication of how 
rapidly the flow develops, was studied in detail as a function of K and the dimensions 
of the obstacle. For example (see figure 14), when L I D  & 1 our results show that wave 
breaking occurs at non-dimensional times that are proportional to L/a .  However, 
when L I D  4 1, our results indicate that the wave-breaking time is inversely 
proportional to (a/D)’(L/D)’. The constants of proportionality are functions of K. 
The wave-breaking times for these two limiting regimes follow the scaling derived from 
linear resonant theories that apply to these two limiting cases. Comparisons between 
our spectral model and GY show close agreement in most cases, even for obstacles of 
relatively large amplitude. The poorest agreement is found for small L I D  and the best 
agreement for L I D  M 1. For L I D  > 1, the GY theory predicts faster wave-breaking 
tiines than our spectral model, but the difference is generally less than 25 %. 

The agreement between our spectral model and GY is best when the obstacle 
dimensions satisfy the KdV scaling relationship on which the GY theory is based: 
D / L  - (a/D)’/’. With the additional constraint that the obstacle amplitude be small, 
this scaling restricts the applicability of the FLW equation to obstacles with small to 
moderate slopes. 



30 J. W. Rottman, D. Broutrnan and R. Grimshaw 

For values of K near 1.5, we find that the steady non-resonant solutions of Long 
(1955) are achieved for sufficiently long obstacles. For narrower obstacles, we observe 
oscillations about the predicted steady state which continue for very long times. The 
amplitude of the oscillations depends on the amplitude and slope of the obstacle as well 
as on K,  but the period depends mainly on K. We offer an explanation for these 
oscillations using linear theory for the most persistent internal waves that are generated 
by narrow obstacles but not by long ones. The oscillations also appear in the numerical 
simulations of Lamb (1994) and Paisley et al. (1994) and in the tank experiments of 
Castro et al. (1990), although in the latter there is some dependence of the period of 
oscillation on the amplitude of the obstacle. 

Near the resonance at K = 2 we find similar behaviour to that near the resonance at 
K = 1, except for the presence of small-amplitude mode- 1 internal waves, which appear 
near the obstacle when the obstacle is sufficiently narrow. Again, except for these 
mode-1 internal waves, the GY solution accurately reproduces many of the main 
features of the flow obtained by the spectral model for obstables that are not too 
narrow. 

We acknowledge helpful discussions with Simon Clarke about the modal similarity 
properties of the FLW equation. We are grateful to Marina De Gabriele for her help 
with the numerical simulations and with the preparation of the figures. This research 
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